CodeReviewApp Architecture

AI-Powered Code Analysis Platform

Use Case Strategy

  • Automated code quality analysis using AI models
  • Security vulnerability detection in source code
  • Technical debt visualization and recommendations

Enterprise Benefits

  • 30-50% reduction in code review time
  • Early detection of security vulnerabilities
  • Reduced technical debt maintenance costs

UX/UI Blueprint

Dashboard Layout

Code Analysis Report

Design System

Primary Colors

Secondary Colors

Typography

Heading 1

Body Text

Caption

Accessibility Features

Color Contrast

4.5:1 minimum contrast ratio for all text

Keyboard Nav

Full keyboard navigation support

Screen Reader

ARIA labels and semantic HTML

Frontend Engineering

React/TypeScript Architecture

src/
components/
CodeEditor.tsx
AnalysisResults.tsx
SecurityFindings.tsx
hooks/
useCodeAnalysis.ts
store/
analysisSlice.ts

State Management

// analysisSlice.ts
import { createSlice, PayloadAction } from '@reduxjs/toolkit';

interface AnalysisState {
  code: string;
  isLoading: boolean;
  results: CodeAnalysisResult | null;
  error: string | null;
}

const initialState: AnalysisState = {
  code: '',
  isLoading: false,
  results: null,
  error: null
};

const analysisSlice = createSlice({
  name: 'analysis',
  initialState,
  reducers: {
    setCode: (state, action: PayloadAction<string>) => {
      state.code = action.payload;
    },
    analyzeCodeStart: (state) => {
      state.isLoading = true;
      state.error = null;
    },
    analyzeCodeSuccess: (state, action: PayloadAction<CodeAnalysisResult>) => {
      state.isLoading = false;
      state.results = action.payload;
    },
    analyzeCodeFailure: (state, action: PayloadAction<string>) => {
      state.isLoading = false;
      state.error = action.payload;
    }
  }
});

export const { 
  setCode, 
  analyzeCodeStart, 
  analyzeCodeSuccess, 
  analyzeCodeFailure 
} = analysisSlice.actions;

export default analysisSlice.reducer;

Custom Hook

// useCodeAnalysis.ts
import { useEffect } from 'react';
import { useDispatch, useSelector } from 'react-redux';
import { analyzeCodeStart, analyzeCodeSuccess, analyzeCodeFailure } from '../store/analysisSlice';
import { RootState } from '../store/store';
import api from '../services/api';

export const useCodeAnalysis = () => {
  const dispatch = useDispatch();
  const { code, isLoading, results, error } = useSelector(
    (state: RootState) => state.analysis
  );

  const analyzeCode = async () => {
    try {
      dispatch(analyzeCodeStart());
      const response = await api.post('/analyze', { code });
      dispatch(analyzeCodeSuccess(response.data));
    } catch (err) {
      dispatch(analyzeCodeFailure(err.message));
    }
  };

  return {
    code,
    isLoading,
    results,
    error,
    analyzeCode
  };
};

Component Implementation

// CodeEditor.tsx
import React, { useState, useEffect } from 'react';
import { useDispatch } from 'react-redux';
import { setCode } from '../store/analysisSlice';
import MonacoEditor from '@monaco-editor/react';
import { LoadingSpinner } from './ui/LoadingSpinner';

interface CodeEditorProps {
  initialValue?: string;
  language?: string;
}

export const CodeEditor: React.FC<CodeEditorProps> = ({
  initialValue = '',
  language = 'javascript'
}) => {
  const [value, setValue] = useState(initialValue);
  const dispatch = useDispatch();

  useEffect(() => {
    const timer = setTimeout(() => {
      dispatch(setCode(value));
    }, 500);
    
    return () => clearTimeout(timer);
  }, [value, dispatch]);

  return (
    <div className="border border-gray-200 rounded-lg overflow-hidden">
      <div className="bg-gray-800 px-4 py-2 flex justify-between items-center">
        <span className="text-sm text-gray-300">{language.toUpperCase()}</span>
        <button className="text-xs bg-indigo-600 text-white px-2 py-1 rounded">
          Analyze
        </button>
      </div>
      <MonacoEditor
        height="500px"
        language={language}
        theme="vs-dark"
        value={value}
        onChange={(newValue) => setValue(newValue || '')}
        loading={<LoadingSpinner />}
        options={{
          minimap: { enabled: false },
          fontSize: 14,
          wordWrap: 'on',
          automaticLayout: true
        }}
      />
    </div>
  );
};
// AnalysisResults.tsx
import React from 'react';
import { CodeIssue } from '../types';
import { IssueSeverityBadge } from './ui/IssueSeverityBadge';

interface AnalysisResultsProps {
  issues: CodeIssue[];
  loading?: boolean;
}

export const AnalysisResults: React.FC<AnalysisResultsProps> = ({
  issues,
  loading = false
}) => {
  if (loading) {
    return <div className="text-center py-8">Analyzing code...</div>;
  }

  if (!issues || issues.length === 0) {
    return <div className="text-center py-8 text-gray-500">No issues found</div>;
  }

  return (
    <div className="space-y-4">
      {issues.map((issue, index) => (
        <div key={index} className="border border-gray-200 rounded-lg p-4">
          <div className="flex justify-between items-start mb-2">
            <h4 className="font-medium">{issue.message}</h4>
            <IssueSeverityBadge severity={issue.severity} />
          </div>
          <p className="text-sm text-gray-600 mb-2">
            Line {issue.line}: {issue.codeSnippet}
          </p>
          <p className="text-xs text-gray-500">{issue.ruleId}</p>
        </div>
      ))}
    </div>
  );
};
// SecurityFindings.tsx
import React from 'react';
import { SecurityFinding } from '../types';
import { CveBadge } from './ui/CveBadge';

interface SecurityFindingsProps {
  findings: SecurityFinding[];
}

export const SecurityFindings: React.FC<SecurityFindingsProps> = ({
  findings
}) => {
  return (
    <div className="space-y-4">
      {findings.map((finding, index) => (
        <div key={index} className="border border-red-200 rounded-lg p-4 bg-red-50">
          <div className="flex justify-between items-start mb-2">
            <h4 className="font-medium text-red-800">{finding.title}</h4>
            <CveBadge cveId={finding.cveId} />
          </div>
          <p className="text-sm text-red-700 mb-2">{finding.description}</p>
          <div className="flex space-x-2">
            <span className="text-xs px-2 py-1 bg-red-100 text-red-800 rounded">
              Severity: {finding.severity}
            </span>
            <span className="text-xs px-2 py-1 bg-red-100 text-red-800 rounded">
              Line: {finding.line}
            </span>
          </div>
        </div>
      ))}
    </div>
  );
};

Backend & API Architecture

FastAPI Service Structure

app/
api/
v1/
endpoints/
dependencies.py
core/
config.py
services/
code_analysis.py

Main Application

# main.py
from fastapi import FastAPI, Depends
from fastapi.middleware.cors import CORSMiddleware
from app.api.v1.endpoints import code_analysis, auth
from app.core.config import settings

app = FastAPI(
    title="Deepsite API",
    description="AI-powered code analysis platform",
    version="1.0.0",
    docs_url="/api/docs",
    redoc_url="/api/redoc"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=settings.BACKEND_CORS_ORIGINS,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Include API routers
app.include_router(
    auth.router,
    prefix="/api/v1/auth",
    tags=["authentication"]
)
app.include_router(
    code_analysis.router,
    prefix="/api/v1/analysis",
    tags=["code analysis"],
    dependencies=[Depends(auth.get_current_active_user)]
)

Authentication

# auth.py
from datetime import datetime, timedelta
from typing import Optional
from fastapi import Depends, HTTPException, status
from fastapi.security import OAuth2PasswordBearer
from jose import JWTError, jwt
from passlib.context import CryptContext
from pydantic import BaseModel
from app.core.config import settings

# Password hashing
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")

class Token(BaseModel):
    access_token: str
    token_type: str

class TokenData(BaseModel):
    username: Optional[str] = None

def verify_password(plain_password: str, hashed_password: str):
    return pwd_context.verify(plain_password, hashed_password)

def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
    to_encode = data.copy()
    if expires_delta:
        expire = datetime.utcnow() + expires_delta
    else:
        expire = datetime.utcnow() + timedelta(minutes=15)
    to_encode.update({"exp": expire})
    encoded_jwt = jwt.encode(
        to_encode, 
        settings.SECRET_KEY, 
        algorithm=settings.ALGORITHM
    )
    return encoded_jwt

async def get_current_user(token: str = Depends(oauth2_scheme)):
    credentials_exception = HTTPException(
        status_code=status.HTTP_401_UNAUTHORIZED,
        detail="Could not validate credentials",
        headers={"WWW-Authenticate": "Bearer"},
    )
    try:
        payload = jwt.decode(
            token, 
            settings.SECRET_KEY, 
            algorithms=[settings.ALGORITHM]
        )
        username: str = payload.get("sub")
        if username is None:
            raise credentials_exception
        token_data = TokenData(username=username)
    except JWTError:
        raise credentials_exception
    
    user = get_user(fake_db, username=token_data.username)
    if user is None:
        raise credentials_exception
    return user

API Endpoints

# endpoints/code_analysis.py
from fastapi import APIRouter, Depends, HTTPException
from fastapi import status
from typing import List
from app.services.code_analysis import analyze_code
from app.models.schemas import CodeAnalysisRequest, CodeAnalysisResult
from app.api.v1.dependencies import get_current_active_user

router = APIRouter()

@router.post(
    "/",
    response_model=CodeAnalysisResult,
    summary="Analyze code for quality and security issues",
    description="""Analyzes the provided code for:
    - Code quality issues
    - Security vulnerabilities
    - Performance anti-patterns
    - Style violations""",
    response_description="Analysis results with found issues"
)
async def analyze_code_endpoint(
    request: CodeAnalysisRequest,
    current_user: str = Depends(get_current_active_user)
) -> CodeAnalysisResult:
    try:
        result = await analyze_code(request.code, request.language)
        return result
    except Exception as e:
        raise HTTPException(
            status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
            detail=f"Error analyzing code: {str(e)}"
        )

@router.get(
    "/history/",
    response_model=List[CodeAnalysisResult],
    summary="Get analysis history",
    description="Returns the user's previous code analysis results",
    response_description="List of previous analysis results"
)
async def get_analysis_history(
    current_user: str = Depends(get_current_active_user)
) -> List[CodeAnalysisResult]:
    # Implementation would query database for user's history
    return []
# services/code_analysis.py
from typing import Optional
from app.models.schemas import CodeAnalysisResult, CodeIssue, SecurityFinding
from app.integrations.huggingface import query_hf_model
from app.integrations.sonarqube import analyze_with_sonarqube

async def analyze_code(
    code: str, 
    language: str = "python"
) -> CodeAnalysisResult:
    """Analyze code using multiple analysis methods"""
    
    # Initialize result objects
    quality_issues: List[CodeIssue] = []
    security_findings: List[SecurityFinding] = []
    
    # 1. Static analysis with SonarQube
    sonar_results = await analyze_with_sonarqube(code, language)
    quality_issues.extend(sonar_results.issues)
    
    # 2. AI-powered analysis with HuggingFace
    hf_prompt = f"""
    Analyze this {language} code for quality and security issues:
    {code}
    
    Return findings in JSON format with:
    - issue_type (quality|security|performance|style)
    - severity (low|medium|high|critical)
    - message
    - line_number
    - recommendation
    """
    
    hf_response = await query_hf_model(
        model="codellama/CodeLlama-34b-Instruct-hf",
        prompt=hf_prompt
    )
    
    # Process HF response and add to findings
    if hf_response and hf_response.get("findings"):
        for finding in hf_response["findings"]:
            if finding["issue_type"] == "security":
                security_findings.append(
                    SecurityFinding.from_hf_response(finding)
                )
            else:
                quality_issues.append(
                    CodeIssue.from_hf_response(finding)
                )
    
    return CodeAnalysisResult(
        quality_issues=quality_issues,
        security_findings=security_findings,
        summary=generate_summary(quality_issues, security_findings)
    )
# models/schemas.py
from pydantic import BaseModel, Field
from typing import List, Optional
from enum import Enum

class Severity(str, Enum):
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"
    CRITICAL = "critical"

class CodeIssue(BaseModel):
    rule_id: str = Field(..., example="S100")
    message: str = Field(..., example="Avoid using 'eval' function")
    severity: Severity = Field(..., example="high")
    line: int = Field(..., example=42)
    code_snippet: str = Field(..., example="eval(user_input)")
    category: str = Field(..., example="security")
    
    @classmethod
    def from_hf_response(cls, data: dict):
        return cls(
            rule_id=data.get("rule_id", "AI-"+data["issue_type"]),
            message=data["message"],
            severity=data["severity"],
            line=data["line_number"],
            code_snippet=data.get("code_snippet", ""),
            category=data["issue_type"]
        )

class SecurityFinding(BaseModel):
    cve_id: Optional[str] = Field(None, example="CVE-2021-1234")
    title: str = Field(..., example="SQL Injection Vulnerability")
    description: str = Field(..., example="User input directly concatenated into SQL query")
    severity: Severity = Field(..., example="critical")
    line: int = Field(..., example=15)
    recommendation: str = Field(..., example="Use parameterized queries")
    
    @classmethod
    def from_hf_response(cls, data: dict):
        return cls(
            title=data["message"],
            description=data.get("recommendation", ""),
            severity=data["severity"],
            line=data["line_number"],
            recommendation=data.get("recommendation", "")
        )

class CodeAnalysisRequest(BaseModel):
    code: str = Field(..., example="def foo():\n    pass")
    language: str = Field("python", example="python")

class CodeAnalysisResult(BaseModel):
    quality_issues: List[CodeIssue] = []
    security_findings: List[SecurityFinding] = []
    summary: str = Field(..., example="Found 3 critical issues")

AI/ML Integration

HuggingFace Integration

# integrations/huggingface.py
import os
from typing import Optional, Dict, Any
import httpx
from app.core.config import settings
from app.core.logging import logger

HF_API_URL = "https://api-inference.huggingface.co/models"
HF_API_KEY = settings.HF_API_KEY

async def query_hf_model(
    model: str,
    prompt: str,
    parameters: Optional[Dict[str, Any]] = None
) -> Optional[Dict[str, Any]]:
    """Query HuggingFace inference API"""
    
    headers = {
        "Authorization": f"Bearer {HF_API_KEY}",
        "Content-Type": "application/json"
    }
    
    payload = {
        "inputs": prompt,
        "parameters": parameters or {
            "max_new_tokens": 1024,
            "temperature": 0.7,
            "return_full_text": False
        }
    }
    
    try:
        async with httpx.AsyncClient(timeout=30.0) as client:
            response = await client.post(
                f"{HF_API_URL}/{model}",
                headers=headers,
                json=payload
            )
            
            if response.status_code == 200:
                return response.json()
            elif response.status_code == 503:
                # Model is loading, wait and retry
                logger.info(f"Model {model} is loading, retrying...")
                await asyncio.sleep(10)
                return await query_hf_model(model, prompt, parameters)
            else:
                logger.error(
                    f"HF API error: {response.status_code} - {response.text}"
                )
                return None
                
    except Exception as e:
        logger.error(f"Error querying HF API: {str(e)}")
        return None

Model Selection Strategy

# services/model_selector.py
from enum import Enum
from typing import Optional, Dict, Any
from app.integrations.huggingface import query_hf_model

class ModelType(str, Enum):
    CODE_ANALYSIS = "code_analysis"
    SECURITY = "security"
    DOCUMENTATION = "documentation"

MODEL_MAP = {
    ModelType.CODE_ANALYSIS: "codellama/CodeLlama-34b-Instruct-hf",
    ModelType.SECURITY: "deepset/roberta-base-squad2",
    ModelType.DOCUMENTATION: "bigcode/starcoder"
}

def get_model_for_task(task_type: ModelType) -> str:
    """Get appropriate model for given task type"""
    return MODEL_MAP.get(task_type, MODEL_MAP[ModelType.CODE_ANALYSIS])

async def analyze_with_model(
    code: str,
    task_type: ModelType,
    language: str = "python"
) -> Optional[Dict[str, Any]]:
    """Analyze code with task-specific model"""
    
    model = get_model_for_task(task_type)
    prompt = generate_prompt_for_task(task_type, code, language)
    
    parameters = {
        "max_new_tokens": 1024,
        "temperature": 0.5 if task_type == ModelType.SECURITY else 0.7
    }
    
    return await query_hf_model(model, prompt, parameters)

def generate_prompt_for_task(
    task_type: ModelType,
    code: str,
    language: str
) -> str:
    """Generate task-specific prompt"""
    
    if task_type == ModelType.SECURITY:
        return f"""Analyze this {language} code for security vulnerabilities:
        {code}
        
        Return JSON with:
        - vulnerability_type
        - severity (low/medium/high/critical)
        - description
        - line_number
        - recommendation
        """
    elif task_type == ModelType.DOCUMENTATION:
        return f"""Generate documentation for this {language} code:
        {code}
        
        Include:
        - Function description
        - Parameters
        - Return value
        - Usage example
        """
    else:  # Default code analysis
        return f"""Analyze this {language} code for quality issues:
        {code}
        
        Return JSON with:
        - issue_type (style/performance/bug)
        - severity (low/medium/high)
        - message
        - line_number
        - recommendation
        """

AI Pipeline Architecture

Code Input

User submits code for analysis

Static Analysis

SonarQube scans for common issues

AI Analysis

CodeLlama analyzes for complex patterns

Results Aggregation

Combine findings from all sources

Report Generation

Create comprehensive report

Deployment & Scalability

Docker Configuration

# Dockerfile
FROM python:3.9-slim as base

# Install system dependencies
RUN apt-get update && apt-get install -y \
    build-essential \
    curl \
    && rm -rf /var/lib/apt/lists/*

# Create and activate virtual environment
ENV VIRTUAL_ENV=/opt/venv
RUN python3 -m venv $VIRTUAL_ENV
ENV PATH="$VIRTUAL_ENV/bin:$PATH"

# Install Python dependencies
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application code
COPY . .

# Frontend build stage
FROM node:16 as frontend-builder
WORKDIR /app/frontend
COPY frontend/package.json frontend/package-lock.json ./
RUN npm install
COPY frontend .
RUN npm run build

# Final production image
FROM base as production
COPY --from=frontend-builder /app/frontend/dist /app/frontend/dist

# Set environment variables
ENV PYTHONUNBUFFERED=1
ENV PORT=8000
ENV MODE=production

# Run application
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "$PORT"]

CI/CD Pipeline

# .github/workflows/deploy.yml
name: Deploy to HuggingFace Spaces

on:
  push:
    branches: [ main ]
  pull_request:
    branches: [ main ]

jobs:
  build-and-deploy:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      
      - name: Set up Python
        uses: actions/setup-python@v4
        with:
          python-version: '3.9'
      
      - name: Install dependencies
        run: |
          python -m pip install --upgrade pip
          pip install -r requirements.txt
      
      - name: Set up Node.js
        uses: actions/setup-node@v3
        with:
          node-version: '16'
      
      - name: Build frontend
        working-directory: ./frontend
        run: |
          npm install
          npm run build
      
      - name: Configure Docker
        run: |
          echo "${{ secrets.HF_TOKEN }}" | docker login \
            -u ${{ secrets.HF_USERNAME }} \
            --password-stdin \
            ghcr.io
      
      - name: Build and push Docker image
        run: |
          docker build -t ghcr.io/${{ secrets.HF_USERNAME }}/deepsite:latest .
          docker push ghcr.io/${{ secrets.HF_USERNAME }}/deepsite:latest
      
      - name: Deploy to Spaces
        uses: huggingface/huggingface_hub@main
        with:
          huggingface_token: ${{ secrets.HF_TOKEN }}
          repo_id: ${{ secrets.HF_USERNAME }}/deepsite
          space_sdk: docker
          space_hardware: cpu-basic
          space_storage: small

Rate Limiting

# app/api/dependencies.py
from fastapi import Depends, Request
from fastapi.security import HTTPBearer
from fastapi import HTTPException, status
from redis import Redis
from app.core.config import settings

security = HTTPBearer()
redis = Redis.from_url(settings.REDIS_URL)

async def rate_limit(
    request: Request,
    credentials: str = Depends(security)
) -> None:
    """Rate limiting middleware"""
    
    # Get user ID from token
    try:
        payload = jwt.decode(
            credentials.credentials,
            settings.SECRET_KEY,
            algorithms=[settings.ALGORITHM]
        )
        user_id = payload.get("sub")
    except JWTError:
        user_id = request.client.host  # Fallback to IP
    
    # Check rate limit
    key = f"rate_limit:{user_id}"
    current = redis.incr(key)
    
    if current == 1:
        redis.expire(key, 60)  # 1 minute window
    
    if current > settings.RATE_LIMIT:
        raise HTTPException(
            status_code=status.HTTP_429_TOO_MANY_REQUESTS,
            detail="Too many requests"
        )

HuggingFace Space Config

# README.md
---
title: Deepsite
emoji: 🚀
colorFrom: indigo
colorTo: purple
sdk: docker
app_file: app/main.py
pinned: true
license: apache-2.0

# Hardware resources
resources:
  cpu: 2
  memory: 8Gi

# Environment variables
env:
  - HF_API_KEY: your_huggingface_api_key
  - MODE: production
  - PORT: 8000

# Health check
healthcheck:
  test: ["CMD", "curl", "-f", "http://localhost:$PORT/api/health"]
  interval: 30s
  timeout: 10s
  retries: 3

Integration Strategy & Maintenance

Deployment Steps

  1. Set up HuggingFace Space with Docker SDK
  2. Configure environment variables in Space settings
  3. Connect GitHub repository for CI/CD
  4. Set up Redis for rate limiting (if needed)
  5. Configure custom domain (optional)
  6. Enable monitoring and alerts

Monitoring

  • Prometheus metrics endpoint at /metrics
  • Health check endpoint at /api/health
  • Log aggregation with ELK stack
  • Performance monitoring with Grafana

Maintenance Plan

Weekly

  • Review error logs and metrics
  • Check for model updates on HuggingFace
  • Verify backup systems

Monthly

  • Update dependencies
  • Review rate limit thresholds
  • Test failover procedures

Quarterly

  • Security audit
  • Performance benchmark
  • User feedback review

Final Integration Strategy

Layered Architecture

Clear separation between frontend, backend, and AI components

API-First Design

RESTful interfaces between all components

Containerized Deployment

Docker containers for easy deployment on HuggingFace Spaces

Made with DeepSite LogoDeepSite - 🧬 Remix